
J. Fluid Mech. (2005), vol. 540, pp. 143–173. c© 2005 Cambridge University Press

doi:10.1017/S0022112005005690 Printed in the United Kingdom

143

Rotational and translational dispersion of fibres
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The rotational and translational motions of fibres in fully developed isotropic
turbulence are simulated for a range of turbulence Reynolds numbers. Equations
for fibre motion based on the leading-order slender-body theory relate the fibre’s
translational and rotational velocities to zeroth and first moments of the fluid velocity
along the fibre length. The translational and rotational motions of fibres with lengths
that exceed the size of the smallest eddies are attenuated by the filtering associated
with these spatial averages. The translational diffusivity of the fibres can be predicted
using a simple theory that neglects any coupling between fibre orientation and the
local direction of the fluid velocity. However, the coupling of fibre orientation with the
axes of extension and rotation is found to greatly reduce the amplitude of the rotary
motions and the rotational dispersion coefficient. The rotary dispersion coefficient is
found to be on the order of the inverse integral time scale. However, its variation with
Reynolds number suggests that the rotary dispersion is influenced by all the scales of
turbulence over the limited range of Reynolds numbers explored in our simulations.

1. Introduction
In this paper, we present results of direct numerical simulations of the translational

and rotational motion of slender fibres in isotropic turbulence. A parametric study
is conducted to determine how the fibres’ translational and rotational dispersion
depends on fibre length and the Reynolds number of the turbulent flow. Whenever
possible, the numerical results will be compared with simple theories and/or scaling
arguments to help clarify the mechanisms governing fibre motion.

The rotational and translational dispersion of fibres in turbulent flows plays an
important role in process such as paper-making, blowing of fibre glass insulation,
drag reduction, and remediation of indoor air pollution. Turbulence tends to create an
isotropic fibre orientation distribution during paper-making and fibre-glass blowing.
This dispersion of fibre orientation may have a desirable effect on material properties.
In risk assessment and remediation of problems involving contamination of indoor
air by long slender asbestos fibres, it is important to know how the fibres are dispersed
by the turbulent air flow. Small concentrations of polymers or high-aspect-ratio fibres
can greatly reduce the pressure drop or drag in a turbulent flow (Daily & Bugliarello
1961; Mih & Parker 1967; Kerekes & Douglas 1972). Since the stress exerted by a
fibre on the fluid is sensitive to fibre orientation, it is important to understand the
orientational motion of fibres in turbulent flows in order to accurately predict drag
reduction.

In addition to these specific applications of fibre motion in turbulence, the subject
has a fundamental interest. Most previous studies of particle motion in turbulence
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have considered small spherical particles whose diameter is assumed to be much
smaller than the Kolmogorov length scale. These ‘point’ particles have no orientation
and respond only to the fluid velocity at one spatial position at any given time. A
slender fibre represents the simplest system in which to investigate the orientation of
non-spherical particles in a turbulent flow. It will also be seen that the equations of
motion for a slender fibre give a relatively simple prescription for how this finite size
particle responds to fluid flow over a finite range of spatial positions. In particular it
will be seen that a fibre’s translational velocity is a spatial average of fluid velocities
along its length and its rotation depends on a first moment of the fluid velocity along
its length.

Olson & Kerekes (1998) and Olson (2001) have considered the rotational and
translational motion of fibres in an isotropic stochastic flow field which repro-
duces Kraichnan’s (1970) energy spectrum. Olson & Kerekes derived analytical
approximations for the rotational and translational dispersion coefficients. Olson
tested these predictions using numerical simulations of fibre motion in a stochastic
field produced by superimposing randomly selected Fourier modes. These studies
reveal some of the qualitative trends that may be expected to influence fibre motion in
turbulence. In particular, it was found that the translational and rotational dispersion
coefficients decrease with increasing fibre length. We will re-examine some of the
predictions of Olson & Kerekes and where possible improve on their approximate
theories. An accurate determination of rotary dispersion requires simulations of fibre
motion in a turbulent flow computed through direct numerical simulations such
as those undertaken in the present study. It will be seen that fibres preferentially
align with the rotational and extensional axes of the flow and this influences the
fibres’ rotational motions in ways that cannot be anticipated from a study based on
an artificial stochastic flow field. The Kraichnan energy spectrum lacks an inertial
subrange and does not mimic the spectrum in isotropic turbulence. By studying
fibre motion in isotropic turbulent flows at several turbulence Reynolds numbers, we
will try to identify the eddy length and time scales that contribute most to various
measures of the fibres’ rotational and translational motion.

In § 2 of this paper, we show how slender-body theory can be used to derive the
equations of motion for a fibre in a turbulent flow field. The rotational dynamics
constitute the unique feature of a study of orientable particles. However, we will also
address (in § 3) the translational motion of the particles. Our interest in translational
motion comes in part from a desire to compare and contrast translation and rotation.
Particles are often used as tracers to visualize the motion of a turbulent fluid. In § 3.1,
we determine how long a fibre would need to be in order that it no longer acts as a
‘fluid tracer’. In particular, we consider the variance of the particle acceleration – an
aspect of fibre motion that is influenced by the smallest eddies of the turbulent flow.
In § 3.2, we consider the temporal auto-correlations of the particle acceleration and the
particle velocity. Simple scaling analysis would suggest that the velocity is influenced
by the largest eddies of the turbulent flow and acceleration by the smallest eddies. In
keeping with this expectation, we will see that the correlation time for velocity scaled
with the integral time scale is a function of the fibre length non-dimensionalized with
the integral length scale. On the other hand, the correlation time for acceleration
scaled with the Kolmogorov time scale is sensitive to the fibre length scaled with the
Kolmogorov length scale. Section 3.3 gives results for the translational dispersion of
fibres.

The rotary motion of the fibres is considered in § 4. We first examine the simplest
measure of rotary motion – the variance of the particle rotation rate. Fibres rotate
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due to fluid velocity gradients, which result primarily from Kolmogorov-scale eddies.
Thus, we will see that the rotation rate variance scales with the square of the
Kolmogorov shear rate. The rotation rate variance begins to decrease as the fibres
become longer than the Kolmogorov length scale. If fibres are placed in the flow
initially with random positions and orientations, the rotational motion is vigorous.
However, the variance of the rotation rate slows down as the fibres align with the
local axes of extension and rotation. On the basis of simple scaling arguments, one
might expect the rotary dispersion coefficient, quantifying the temporal evolution of
particle orientation, to depend on Kolmogorov length and time scales. However, the
results of direct numerical simulations indicate no simple scaling for this important
turbulence property, indicating that eddies of all scales contribute to rotary dispersion.
In rotary Brownian motion of colloidal rods, there is a large separation between the
time scale for the correlation of rotational velocity and the time over which the
rods’ orientations change appreciably. This separation of time scales is absent in
turbulent rotary dispersion. As a result, turbulent dispersion cannot be characterized
by a unique rotary diffusion coefficient and we examine several measures of rotary
dispersion. It will be seen that the ratios of the various measures of rotary dispersion
are O(1) constants independent of the fibre length and the turbulence Reynolds
number.

2. Simulation method
In § 2.1, we briefly review the standard method used to simulate stationary isotropic

turbulence, define the relevant length and time scales, and summarize the conditions
covered by our parametric study. Section 2.2 gives a derivation of the equations of
motion for the fibres.

2.1. Stationary homogeneous isotropic turbulent flows from DNS

The incompressible Navier–Stokes equations are solved numerically using a pseudo-
spectral method on a uniform three-dimensional mesh to generate a stationary
homogeneous isotropic turbulent flow. In physical space, the solution domain is
a cube of side 2π with N3 grid points and periodic boundary conditions. A
pseudo-spectral method is used to evaluate the nonlinear terms in the Navier–Stokes
equations (Canuto et al. 1988). Since turbulent flows lose energy due to the viscous
dissipation, an artificial forcing must be introduced in the Navier–Stokes equation to
maintain statistically stationary turbulence (Eswaran & Pope 1988). Using 323 and
643 uniformly spaced grid systems, Reynolds numbers Rλ ( ≡ u′λ/ν) between 16.5 and
53.3 are obtained by varying the kinematic viscosity ν. Here u′ is the r.m.s. value of
the turbulent velocity and λ is the Talyor microscale.

In isotropic turbulent flows, the turbulent kinetic energy K and the dissipation rate
ε can be determined from the three-dimensional energy spectrum, E(k):

K ≡ 3
2
u′2 =

∫ ∞

0

E(k) dk, (1)

ε ≡ 〈ε〉 = 2ν

∫ ∞

0

k2E(k) dk, (2)

where k ≡ |k| is the magnitude of the wave vector. The Eulerian integral length scale
Λ associated with the two-point velocity correlation in the longitudinal direction
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Rλ 16.5 30.7 39.9 53.3
N 3 323 323 323 643

ν 0.0524 0.0251 0.0165 0.0105
K 0.611 0.805 0.827 0.879
ε 0.174 0.182 0.175 0.174
λ 1.361 1.057 0.892 0.730
η 0.1704 0.0971 0.0719 0.0509
τη 0.556 0.376 0.314 0.248
Λ 1.768 1.604 1.483 1.405
τE 2.797 2.210 2.021 1.848
τL 2.073 1.784 1.552 1.444
kmaxη 2.570 1.465 1.085 1.536
�t/τη 5.6 × 10−3 8.4 × 10−3 0.010 0.025

Table 1. The statistical quantities from the present simulations of stationary isotropic
homogeneous turbulent flows.

(parallel to the velocity) and time scale τE are given by

Λ =
π

2u′2

∫ ∞

0

E(k)
1

k
dk, (3)

τE =
Λ

u′ . (4)

The Taylor microscale λ represents the area of a quadratic function, which fits
the small separation region of the two-point velocity correlation in the longitudinal
direction and decays from 1 to 0, and is given by

λ =
√

3u′(5ν/ε)1/2. (5)

The Kolmogorov scales in turbulence can be obtained by applying a dimensional
analysis using dissipative properties ν and ε. The Kolmogorov length scale η

representing the size of the smallest eddies is given as

η = (ν3/ε)1/4. (6)

The Kolmogorov time scale τη, velocity uη and shear rate Γη can also be obtained
from the dissipative properties:

τη = (ν/ε)1/2, (7)

uη = (νε)1/4, (8)

Γη = (ε/ν)1/2. (9)

The conditions for our direct numerical simulations are summarized in table 1. The
spatial resolution is characterized by kmaxη, where kmax = 1

3

√
2N is the magnitude

of the highest resolved wavenumber. Eswaran & Pope (1988) established that
simulations with kmaxη larger than 1.5 corresponding to a grid spacing of about
twice the Kolmogorov length scale give excellent resolution of the flow. Among our
simulations, the case with the poorest spatial resolution is Rλ = 39.9 with kmaxη = 1.085
corresponding to a grid spacing of about 2.7 times of η. A constant time step size �t is
used such that the worst temporal resolution is approximately 1

40
of the Kolmogorov

time scale. All the statistical quantities were obtained after the quantities acquired a
statistical stationary state.
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Figure 1. Schematic of the inner and outer regions of the flow around a fibre in
slender-body theory.

We will investigate the translational and rotational motions of fibres with lengths L

(= 2l) such that L/2π = 7.96 × 10−3, 1.59 × 10−2, 7.96 × 10−2, 0.159, 0.318, and 0.477.
This corresponds to L/η = 0.3 to 18 and L/Λ = 0.03 to 1.7 for Rλ =16.5 and to
L/η = 0.98 to 59 and L/Λ= 0.04 to 2.1 for Rλ =53.3.

2.2. Equations of fibre motion

We will simulate the motion of neutrally buoyant (force- and torque-free) fibres in
isotropic turbulence. Because the volume of a fibre is a very small fraction of the
sphere that circumscribes it, a fibre settles slowly. Thus, the neglect of sedimentation is
not particularly restrictive. For example, polymer fibres (such as polyethylene oxide)
with lengths L =1 to 10 mm and diameters d = 10 to 100 µm have settling velocities of
about 3 × 10−6 to 3 × 10−4 cm s−1 in water. Glass fibres with similar dimensions settle
with velocities of 5 × 10−5 ∼ 5 × 10−3 cm s−1 in water. Since the velocities associated
with even a weak turbulent flow are on the order of 1 to 10 cm s−1, one can usually
neglect sedimentation velocities compared with turbulent velocities. We also consider
the fibre concentration to be sufficiently small so that the fibres do not interact with
one another hydrodynamically or through direct mechanical contacts.

We will use slender-body theory (Batchelor 1970) to derive equations of motion
for fibres whose length L is much larger than their diameter d (= 2b). Slender-body
theory is a matched asymptotic expansion with different asymptotic approximations
in the inner and outer regions illustrated in figure 1. The inner region is at separations
from the fibre, h, that are much smaller than the fibre half-length, l = L/2. The outer
region is at separations much larger than the fibre radius, b. There is a matching
region b 	 h 	 l for which both the inner and outer solutions are valid. The local
coordinate s is a position measured parallel to the fibre’s axis that varies from −l

to l. It is assumed that viscous stresses dominate in the inner region and that the
gradients in velocity and pressure along the fibre length are negligible compared with
those perpendicular to the fibre. The finite thickness of the fibre does not influence
the fluid velocity in the outer region. As a result, the fluid velocity in this region can
be approximated as that produced by a line of forces distributed over the fibre axis.

Most previous applications of slender-body theory have considered viscous-
dominated flows in both inner and outer regions. However, one can include inertial
effects in the outer region of a slender-body theory provided that one has a method
for solving the Navier–Stokes equations driven by the line of forces. Khayat & Cox
(1989) used slender-body theory to determine the force and torque acting on a fibre
translating through an otherwise quiescent fluid when viscous forces dominated in
the inner region but inertia was important in the outer region. They solved the Oseen
approximation to the Navier–Stokes equations to determine the leading behaviour of
the fluid velocity for γ = l/b 
 1. In the present application, we will also consider a
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Figure 2. Schematic of the outer region in slender-body theory.

viscous-dominated inner region and an outer region that may be influenced by fluid
inertia.

Viscous forces dominate in the inner region provided that a Reynolds number
Reb( = ucb/ν) based on the fibre radius is much smaller than one. Here uc is
a characteristic velocity which for our application is equal to the characteristic
velocity of an eddy of size L, i.e., uc ∼ (εL)1/3. For fibres with lengths similar to the
Kolmogorov length scale, L =O(η), uc = uη, and Reb = O(1/γ ) 	 1. If L 
 η, then
uc = uη(L/η)1/3 and Reb = O((L/η)1/3/γ ). Thus, there is still a viscous-dominated inner
region provided that γ 
 (L/η)1/3. For Reb 	 1, the fluid velocity in the inner region
can be expressed as a quasi-two-dimensional solution of Stokes equations of motion,
i.e.

u
(in)
i = Ui + ṗis − 1

4πµ
fj (s)(δij + pipj ) ln

(
h

b

)

+
1

4πµ
fj (s)

(
hihj

h2
− δij − pipj

2

)
+ O

(
1

h2

)
, (10)

where U denotes the translational velocity of the fibre centre of mass, ṗ the time rate
of change of the fibre orientation vector, p the fibre orientation vector, f (s) the force
per unit length along the fibre, and µ the dynamic viscosity of the fluid.

In the outer region (h 
 b), the flow field is three-dimensional and the inertial and
viscous terms in the equations of motion are equally important. One cannot detect the
finite thickness of the fibre, so that the stresses exerted on the fluid by the fibre can be
treated as a line force. This outer solution can be obtained using a spectral code such
as those typically used for simulating isotropic turbulent flows. The forcing in this
spectral code would come both from the typical stochastic forcing used to produce
the turbulence and from the lines of forces exerted by the fibres. In a future study we
will investigate this two-way coupling problem. However, in the present study we will
shortly show that the inertial modifications to the velocity disturbance caused by the
fibres do not influence the fibre motion at leading order for slender fibres.

We express the outer approximation to the fluid velocity field (valid for h 
 b)
as the sum of the fibre-induced fluid velocity disturbance that would occur in an
inertialess fluid and an additional velocity uE

i that arises from the turbulent flow field
and the inertial corrections to the velocity produced by the fibre, i.e.

u
(out)
i = uE

i (r) +
1

8πµ

∫ L/2

−L/2

ds ′
(

δij

r ′ +
r ′
i r

′
j

r ′3

)
fj (s

′), (11)

where r ′
i = ri − s ′pi (see figure 2). In our future two-way coupling calculation, u

(out)
i

will be obtained from the spectral code that includes forces due to the fibres as well as
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a stochastic forcing and equation (11) will be used as a definition of uE
i . By matching

inner and outer solutions, we can obtain the integral equation for the fluid forcing
exerted on the fibre.

Matching the inner and outer approximations to the fluid velocity and neglecting
algebraically small terms in γ yields the following integral equation for the force
distribution along the fibre length:

Ui + ṗis = uE
i (s) +

1

4πµ
(δij + pipj )fj (s)

(
ln 2γ + ln

√
1 − s2

b(s)

)

+
1

8πµ
(δij − 3pipj )fj (s)+

1

8πµ
(δij + pipj )

∫ 1

−1

ds ′ fj (s
′) − fj (s)

|s ′ − s| . (12)

Here we non-dimensionalize s with the half-length l and the radius b(s) with a
characteristic radius, i.e. b(s) in (12) is replaced simply with 1 in the case of a
cylindrical fibre. If we solve this equation exactly, we will obtain the velocity, rotation
rate, and force distribution with O(1/γ 2) errors. However, to avoid a numerical
solution of the integral equation, we can expand the solution in powers of 1/ ln 2γ ,
thereby making logarithmic errors. The leading solution for the force is then

ln 2γ

4πµ
(δij + pipj )fj (s) = Ui + ṗis − uE

i (s). (13)

This solution has relative errors of O(1/ ln 2γ ). While this quantity is only moderately
small for realistic values of the aspect ratio, it has been found in most applications
that the leading approximation to slender-body theory yields reasonable predictions
for the behaviour of fibres with aspect ratios larger than about 20.

We will consider fibres suspended in liquids. Since the volume of fluid set in motion
by the translation and rotation of a fibre is a sphere of diameter L, the fluid inertia
is much more important than the inertia of the fibre itself as long as the densities of
the fibre and fluid are comparable. Thus, we will neglect the fibre’s inertia. The force
F and torque G exerted on the neutrally buoyant inertialess fibre will be zero:

Fi =

∫ L/2

−L/2

fi(s) ds = 0, (14)

Gi =

∫ L/2

−L/2

εijkfj (s)pks ds = 0. (15)

Integrating (13) over the fibre and applying the constraint of no net force (14), the
velocity of the centre of mass of the fibre is

Ui =
1

L

∫ L/2

−L/2

uE
i (s) ds. (16)

Multiplying (13) by εlimpms and integrating over s, the rotation rate of the fibre is

ṗi =
12

L3

∫ L/2

−L/2

(δij − pipj )u
E
j (s)s ds. (17)

Because the force exerted by the fibre is small, the contributions to uE
i (s) driven by

the forces exerted by the fibre are smaller than the contributions due to the turbulent
field by a factor of 1/ln 2γ . Thus, we will approximate uE

i (s) by the velocity field
ui(s) evaluated by a spectral solution of the Navier–Stokes equation without the
fibre forcing, i.e. a one-way coupling approximation. Olson & Kerekes (1998) and
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Figure 3. The polynomial approximation for the fluid velocity distribution along
the fibre length.

Olson (2001) adopted (16) and (17) in their studies of fibre motion in a stochastic
flow field. However, they presented these equations as analogous to the free-draining
approximation in polymer science and did not provide the foregoing argument that
these equations yield the leading-order behaviour for fibre rotation and translation in
the limit 1/ ln 2γ 	 1.

The scheme outlined above could be made more accurate by including higher-order
terms in the expansion of the integral equation (12) obtained from slender-body
theory. The first effects of the fluid velocity disturbance produced by the fibres would
arise at the next order, i.e. O((1/ln(2γ ))2) in the expansion. To be consistent then, one
must include two-way coupling effects at the same time as increasing the accuracy of
the slender-body theory. Such a calculation is planned for a forthcoming publication.
The equations of fibre motion, (16) and (17), obtained above involve only the fibre
length and not the fibre diameter. Thus, our results will be independent of the
fibre aspect ratio. Of course the aspect ratio must be sufficiently large so that the
leading approximation to slender-body theory is accurate (typically γ > 20). In add-
ition the Reynolds number based on the fibre radius Reb = O((L/η)1/3/γ ) must be
much smaller than one. For the longest fibres considered in our study this restriction
amounts to γ 
 4.

The most accurate means of determining the fibre velocity and rotation rate would
be to express the fluid velocity in (16) and (17) in terms of its Fourier transform and
perform the integrals over s to yield:

Uj =
∑

k

ûj exp(i k · X)
sin(k · pl)

k · pl
, (18)

ṗj =
∑

k

i 6

L
(δjk − pjpk)ûj exp(i k · X)

{
−cos(k · pl)

k · pl
+

sin(k · pl)

(k · pl)2

}
, (19)

where û is the Fourier transform of u, X is the fibre centre of mass, and k = (k1, k2, k3)
is the wavenumber. However, the evaluation of the wavenumber sums for each fibre
is very computationally intensive. Therefore, we adopted a more efficient algorithm,
in which we approximate the velocity distribution along the fibre as an Mth-order
polynomial (see figure 3):

ui(s) =

M∑
m=0

am,is
m. (20)

The polynomial coefficients am,i (m =0, 1, . . . , M) are determined from the velocity
data at M +1 fixed points which are distributed at equidistant intervals along the fibre
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length. The velocity at each of these points is obtained by interpolating the velocity at
43 neighbouring grid points. A third-order method adopting tri-cubic shape functions
is used to interpolate the data. Substituting (20) into (16) and (17), the velocity of the
fibre centre and the rotation rate are expressed as

Ui =
1

L

M∑
n=0

am,i

m + 1
{lm+1 − (−l)m+1}, (21)

ṗi =
12

L3
(δij − pipj )

M∑
n=0

am,j

m + 2
{lm+2 − (−l)m+2}. (22)

We tested this more efficient scheme by comparing the results from the inverse
Fourier transform (18) and (19) with those from (21) and (22) for various orders
of the polynomial. The velocity, position, orientation and rotation rate of the fibre
computed from the scheme using M � 5 were identical with those from the Fourier
representation. An eighth-order polynomial (M = 8) was used in the subsequent
computational studies.

In the simulations, the statistics of fibre motion such as variances and correlations of
fibre properties can be obtained by considering many fibres. Throughout the present
work, the motions of 2000 fibres were computed simultaneously for each of 10 fluid
flow realizations having different initial velocity fields to obtain accurate statistics
for the various statistical quantities of fibre motions. Fibre motions in the turbulent
flow fields were simulated for about 9τE after the flow had achieved a stationary
state. It was found that the fibre orientation equilibrated with the local flow after
a period of 3τE . Unless otherwise noted, the statistics of fibre motion reported in
this study correspond to the statistical steady state of the fibre motion achieved for
3τE < t < 9τE .

3. Translational motion of the fibre
3.1. Fibre acceleration variance

Solid particles are often used as tracers to reveal the velocity of a fluid. It is therefore
of fundamental interest to determine what types of particles will truly act like fluid
tracers in a turbulent flow. Particles may deviate from the fluid motion due to their
inertia or because the particle size becomes larger than the size of the smallest eddies.
For neutrally buoyant spheres, both of these effects occur when the sphere diameter is
comparable with the Kolmogorov length scale. For neutrally buoyant fibres, the fibre
volume and mass are small enough that fibre inertia can be neglected when L = O(η).
However, fibres with L � O(η) will respond to an average of the fluid velocity along
the fibre length (see equation (16)) rather than the fluid velocity at the fibre centre.
According to Kolmogorov scaling analysis, the acceleration of the fluid is controlled
by the smallest eddies of size η. Thus, the variance of the acceleration of a particle
is a simple but sensitive measure of how faithfully a finite size particle indicates the
translational motion of a fluid particle.

It is natural to normalize the acceleration variance of the fibre’s centre of mass,
〈a2〉 (≡ 1

3
〈a · a〉), with the dissipation scales:

〈a2〉+ = 〈a2〉 τη
2

uη
2

= 〈a2〉 ν1/2

〈ε〉3/2
, (23)
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Figure 4. The acceleration variance a0 of short fibres with L<η is plotted as a function of
Rλ together with the slope of Rλ

1/2 (solid line). The Kolmogorov-scaled variance a0 is denoted
by symbols: �, 16.5<Rλ < 53.3 (present); �, 38< Rλ < 93 (Yeung & Pope 1989).

where the angle bracket 〈·〉 is the ensemble average and the superscript ‘+’ indicates
the non-dimensional acceleration variance. As the fibre length becomes less than η,
〈a2〉+ approaches the acceleration variance of a fluid particle, which we will denote as
a0. According to the Kolmogorov hypotheses (Kolmogorov 1941), at high Reynolds
numbers, small-scale statistics non-dimensionalized by the Kolmogorov scales are
universal. If the acceleration of the fluid particle is a dissipation-scale quantity, the
constant a0 must be independent of the Reynolds number. However, the acceleration
variance of the fluid particle exhibits a strong Reynolds number dependence due to
turbulent intermittency such that a0 increases approximately as Rλ

1/2 at 38 � Rλ � 235
(Yeung & Pope 1989 and Vedula & Yeung 1999). Figure 4 indicates that our results
(solid circles) for a0 follow the same scaling observed by Yeung & Pope (open circles).
The recent experimental study of Voth et al. (2002) suggests that the Reynolds number
dependence of a0 is weaker or absent at very high Reynolds numbers (Rλ � 500).

When the fibre length exceeds the Kolmogorov length scale, the fibre acceleration
becomes insensitive to the smallest scale velocity disturbances. This occurs because
the fibre velocity is a spatial average of the fluid velocity over the fibre length as
indicated by equation (16). The ratio of the variance of a fibre’s acceleration to that
of a fluid particle is plotted against the fibre length scaled by η in figure 5 for all
of the Reynolds numbers simulated. As the fibre length increases, the fibre variance
〈a2〉+ starts to decrease from a0. For L/η < 15, the acceleration can be fitted by a
Gaussian function of fibre length:

〈a2〉+

a0

∼ exp

[
− 1

2W 2

(
L

η

)2]
, (24)

where W is the dimensionless width of the Gaussian. With the exception of the
lowest Reynolds number simulated, a single Reynolds-number-independent Gaussian
curve with W = 20.6 fits the data. This suggests that whereas the magnitude of
the acceleration variance does not follow the expected Kolmogorov scaling, the
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Figure 5. The fibre acceleration variance normalized by a0 is plotted as a function of fibre
length L. The open symbols denote the DNS results: × , Rλ = 16.5; �, 30.7; �, 39.9; �, 53.3.
The DNS data for Rλ = 30.7 ∼ 53.3 are fitted to the Gaussian curve (solid line) for L < 15η.
The solid symbols (�) denote the experimental data for spherical particles with diameter d at
Rλ = 970 (Voth et al. 2002).

Kolmogorov-scale eddies still do make a large contribution to the acceleration of
a particle. The decay of the acceleration variance for longer fibres (L > 20η) is not
universal. The fibre acceleration variance decays more slowly at higher Rλ as may be
expected from the broader energy spectrum.

Figure 5 also gives Voth et al.’s experimental results for the acceleration variance of
spherical particles with diameter d at a high Reynolds number (Rλ = 970). The density
ratio of the particles and fluid was close to one. It can be seen that the experimental
results for spheres show the same qualitative trend of decreasing particle acceleration
variance with increasing particle size exhibited by our simulations for fibres. The
acceleration variance for spheres decreases more rapidly with the ratio of the particle
size to the Kolmogorov length scale than does the acceleration variance for fibres.
This faster decrease may be attributed to two factors. First, if we assume that spheres,
like fibres, respond to a spatial average of the fluid velocity over their volumes, the
average of the fluid velocity for a sphere would be weighted more heavily toward
velocities at its periphery. Thus, the sphere filters out high-wavenumber fluid velocities
more strongly than does a fibre for the same maximum particle dimension. Second,
the inertia of a spherical particle becomes important when d = O(η) as indicated by
the fact that the particle Stokes number takes an O(1) value. The inertial spherical
particle does not respond to the highest frequencies of the fluid velocity field. On the
other hand, the small volume and mass of a neutrally buoyant fibre implies that its
inertia is negligible even when L =O(η).

3.2. Correlation statistics for the fibre’s translational motion

We will now consider the two-time auto-correlations of the translational velocity
and the acceleration of fibres as well as the associated correlation times. The auto-
correlation function of fibre velocity is of interest because the integral of this function
gives the translational dispersion coefficient which will be considered in the following
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Figure 6. The Lagrangian auto-correlations of fibre velocity and acceleration for various
fibre lengths at Rλ = 39.9. Upper curves denote ρU (t) and lower curves denote ρa(t).

subsection. Another motivation for considering the auto-correlations of velocity and
acceleration is that they provide a useful comparison for the orientational statistics,
i.e. the auto-correlations of the fibre’s orientation and rotation rate.

The length scale of the eddies that give the largest contribution to the acceleration a,
rotation rate ṗ, and velocity U of a fibre can be determined from dimensional analysis.
In the inertial subrange, we assume these quantities depend only on the energy
dissipation rate ε and the size le of the eddies yielding a ∼ (ε2/le)

1/3, ṗ ∼ (ε/ l2e )
1/3, and

U ∼ (εle)
1/3, where η < le < Λ. The characteristic acceleration and rotation rate grow

with decreasing eddy size in the inertial subrange and are expected to be controlled by
the Kolmogorov-scale eddies (le ∼ η). Thus, we expect the correlation times for these
quantities scaled with the Kolmogorov time scale to be functions of the fibre length
scaled with the Kolmogorov length scale. The fibre velocity is the time integral of the
acceleration and scaling analysis suggests that the fibre velocity is controlled by the
large-scale eddies. We therefore expect that the correlation time for the fibre velocity
scaled by the integral time is a function of the fibre length scaled by the integral
length scale. The fibre orientation is the temporal integral of the fibre rotation rate.
However, while velocity is a dimensional variable related to an unbounded translation,
fibre orientation is a bounded, dimensionless variable. Thus, it is less clear how the
correlation time for fibre orientation should scale and this subject will be investigated
in § 4.2.

The Lagrangian correlation of a certain property A is defined as

ρA(t) =
〈A(t∗)A(t∗ + t)〉

〈A(t∗)A(t∗)〉 . (25)

The Lagrangian correlations of the velocity and acceleration of the fibre are calculated
by computing the trajectories of many fibres in stationary homogeneous isotropic
turbulent flows. Figure 6 illustrates the decaying behaviors of the correlations ρU (t)
and ρa(t) at Rλ = 39.9. The translational motions of fibres with L < η are identical
to those of fluid particles and so ρU (t) and ρa(t) are equivalent to the corresponding
correlation functions for fluid particles. The correlation functions for the acceleration
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Figure 7. The integral time scales TU and τu scaled by the Eulerian time scale τE are plotted
as functions of the fibre length normalized by the Eulerian integral length scale Λ. The solid
symbols denote the DNS data of TU for different Reynolds numbers: �, Rλ = 16.5; �, 30.7;
�, 39.9; �, 53.3. The open symbols denote the data for τu. The solid line is the fit (27) to the
short-fibre behaviour of TU . The dashed line is the fit (28) for τu.

and velocity of fibres with larger lengths decay more slowly than those of fluid
particles. This may be attributed to the fact that longer fibres respond to a spatial
average of the fluid velocity along their lengths. As a result, they are less sensitive to
the smaller, faster-decaying eddies.

The integral time for the fibre’s centre of mass velocity defined as

TU =

∫ ∞

0

ρU (τ ) dτ (26)

is a characteristic correlation time for fibre velocities. The correlation time scaled by
the Eulerian integral time scale is plotted as a function of the fibre length scaled by
the integral length scale in figure 7 for Rλ = 16.5 to 53.3. The results for fibre length
less than Λ can be fitted approximately by a quadratic function

TU

τE

= bU,0 + bU,2

(
L

Λ

)2

, (27)

where the best fit is given by the coefficient values bU,0 = 0.773 and bU,2 = 0.102
independent of Rλ. While the statistical scatter leads to considerable uncertainty in
the coefficients bU,0 and bU,2, there is no systematic variation of the data plotted in
this way with Rλ whereas there is a systematic variation in TU/τη for a given value of
L/η with Rλ. This confirms our expectation that the translational motion of the fibre
is controlled primarily by integral-scale eddies.

The increase in the fibre-velocity correlation time TU with increasing fibre length
L can be attributed to two factors: (a) changes in the way the fibre’s centre of mass
samples space; and (b) the fact that the fibre velocity is equal to a spatial average
of fluid velocities. To isolate the former effect, we can consider the integral time τu

for the fluid velocity at the fibre centre of mass. Short fibres with L < η translate
like fluid particles and have no variation of fluid velocity along their lengths, so that
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Figure 8. The zero-crossing time for ρa(t) scaled by the Kolmogorov time scale τη is plotted
as a function of fibre length normalized by the Kolmogorov length scale η. The symbols denote
the DNS results for different Reynolds numbers: �, Rλ = 16.5; �, 30.7; �, 39.9; �, 53.3. The
line denotes the fit for small fibres (L/η < 15) given by (29).

TU = τu = τL where τL is the Lagrangian correlation time for the fluid velocity. From
the simulations, we find that τL =0.773τE . As the fibre length increases, the fibre
velocity becomes smaller. Eventually for L 
 Λ, the fibre velocity would approach
zero and τu would approach the Eulerian correlation time for the fluid velocity τE .
The DNS results for τu are plotted as the open symbols in figure 7. They can be fitted
by the following functional form which approaches the appropriate limits as L → 0
and L → ∞:

τu

τE

= 0.773 +
b1(L/Λ)2

b1(L/Λ)2/0.227 + b2

. (28)

Here b1 = 0.102 and b2 = 2.01 independent of Rλ. The increase in the data shown with
the open symbols with L indicates the increase in the fibre-velocity correlation time
that results from the slower rate at which the fibre samples spatial positions. The
difference between the closed and open symbols indicates the increased correlation
time resulting from spatial averaging effects. The similarity in the values of TU and
τu indicates that most of the variation of the correlation time for fibre velocity with
fibre length can be explained by the changes in the way the fibre’s centre of mass
samples the fluid velocity field.

Next, we consider the temporal correlations of the fibre’s acceleration. The integral
of ρa(t) cannot be used as a characteristic time for acceleration because the integral
is zero. The acceleration is the time derivative of the velocity, so that ρa(t) is negative
for long time intervals where ρU (t) has an upward curvature (Tennekes & Lumley
1972). Instead we take the time Ta0 at which ρa = 0 (which will be referred to as the
zero-crossing time) as a characteristic time for fibre acceleration.

The zero-crossing time for fibre acceleration scaled by τη is plotted as a function
of fibre length scaled by η in figure 8. For the fibres with L � 15η, the zero-crossing
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time Ta0 shows a quadratic increase with the fibre length:

Ta0

τη

= ca,0 + ca,2

(
L

η

)2

. (29)

The asymptotic value of Ta0/τη in the short-fibre limit, which is denoted by ca,0 in
(29), is 2.19 with no systematic Reynolds number dependence. The zero-crossing time
for acceleration of short fibres, Ta0/τη = 2.19 is in good agreement with the value of
2.2 for fluid particles reported by Yeung & Pope (1989). Yeung & Pope noted that the
zero-crossing time is independent of Rλ while the minimum value of ρa(t) increases
with increasing Rλ. The coefficient ca,2 = 1.125 × 10−3 also is independent or Rλ. For
L � 20η, Ta0 increases with L/η more slowly than the quadratic function in (29).

We have seen that the temporal correlations of fibre velocity and fibre acceleration
are consistent with the expectation based on scaling analysis that the velocity and
acceleration are controlled by integral- and Kolmogorov-scale eddies, respectively.
The correlation times for both velocity and acceleration increase with increasing fibre
length. These trends result in part from the fact that longer fibres are less sensitive to
small-scale, rapidly fluctuating fluid motions. In addition, longer fibres have smaller
velocities and sample spatial positions more slowly.

3.3. Translational diffusivity

We turn now to the translational dispersion of the fibre, which will be defined in
terms of the time rate of change of the mean-square displacement of the particle’s
centre of mass, 〈�X2〉 ≡ 〈�X · �X〉:

Dt =
1

6

d〈�X2〉
dt

∣∣∣∣
t→∞

, (30)

where �X = X(t) − X(0). The translational dispersion of fibres is of interest in
applications such as the spread long slender asbestos fibres, a form of indoor air
pollutant. The dispersion coefficient was evaluated from the slope of 〈�X2〉 versus
time plots at large times when the mean-square displacement was found to grow
linearly with time. The time required to reach a linear-slope region in 〈�X2〉 is
approximately equal to TU . The DNS results for Dt normalized by the diffusivity of a
fluid particle (u′2τL) indicated by the symbols are plotted as a function of fibre length,
L/Λ in figure 9. For fibre lengths smaller than about 0.3Λ, the diffusivity Dt is the
same as that of a fluid particle. As the fibre length increases, the dispersion decreases.
The simulation results show no statistically significant dependence on Rλ when scaled
with integral-scale quantities.

We now turn to an approximate theoretical estimate of the fibre diffusivity. From
equation (30), the dispersion coefficient can be related to a time integral of the two-
time auto-correlation of fibre velocity. Neglecting changes in the fibre orientation
over the time interval τ and using the stationarity and homogeneity of the turbulent
flow, we obtain

Dt =
1

3

∫ 0

−∞
〈Ui(0)Ui(τ )〉 dτ = u′2 4

L2

∫ 0

−∞
dτ

∫ L

0

ds(L − s)R(X(τ ) + p(τ )s, τ ), (31)

where R ≡ 1
3
(R11 + R22 + R33) and Rαα (α = 1, 2, or, 3) is the spatio-temporal velocity

correlation measured along the trajectory of fibre’s centre and its length, i.e.

Rαα(X(τ ) + p(τ )s, τ ) =
〈uα(0, 0)uα(X(τ ) + p(τ )s, τ )〉

〈uα(0, 0)uα(0, 0)〉 . (32)
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Figure 9. The long-time translational diffusivity Dt is plotted as a function of fibre length.
The symbols denote the DNS results: �, Rλ = 16.5; �, 30.7; �, 39.9. �, 53.3. The lines denote
the theoretical predictions based on (39).

We now approximate the velocity correlation function as the product of a term
R

(
X(τ ), τ

)
expressing the two-time correlation of velocity at the centre of mass of

the fibre and a term R(sp) giving the correlation of velocity between two points along
the fibre length at a single time, i.e.

R(sp(τ ) + X(τ ), τ )  R(s)R(X(τ ), τ ). (33)

The time integral of R(X(τ ), τ ) simply gives the integral time τu for the fluid velocity
at the fibre centre of mass. In the previous subsection we found that this quantity is
described well by equation (28), which indicates that τu varies from the Lagrangian
integral time at small L to the Eulerian integral time at large L. If we assume that the
fibre orientation is independent of the direction of the fluid velocity, then the spatial
velocity correlation function can be expressed as

Rij(x) =
1

u′2

∫ ∞

−∞
dk

(
δij − kikj

k2

)
E(k)

4πk2
eik·sp, (34)

where E(k) is the energy spectrum of the turbulent flow. The spatial velocity
correlation can be decomposed into terms parallel and perpendicular to the fibre
orientation:

Rij = R‖pipj + R⊥(δij − pipj ) (35)

where

R‖(s) =
2

u′2

∫ ∞

0

dk E(k)
1

k3s3
{sin(ks) − ks cos(ks)}, (36)

R⊥(s) =
1

u′2

∫ ∞

0

dk E(k)
1

k3s3
{(k2s2 − 1) sin(ks) + ks cos(ks)}. (37)

Since the spatial correlation R(s) in (33) is an isotropic quantity, R(s) = 1
3
Rii(s).
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Rλ 16.5 30.7 39.9 53.3
cζ 1.901 3.035 3.520 4.089
cη 0.519 0.448 0.425 0.418

Table 2. The coefficients of cζ and cη in (38) are determined by matching with the present
DNS results for K and ε.

In order to calculate R‖ and R⊥, we use the energy spectrum E(k) suggested by
Pope (2000) which fits the available experimental data for isotropic turbulence:

E(k) = Cε2/3k−5/3

(
kζ√

k2ζ 2 + cζ

)5/3+α

exp
[
−β

{(
k4η4 + cη

4
)1/4 − cη

}]
. (38)

This expression captures the appropriate shapes of the energy spectrum in the energy-
containing and dissipation wavenumber ranges as well as the k−5/3 dependence in the
inertial subrange. Here ζ = K3/2/ε and the other constants are determined to recover
the experimental data: C = 1.4, α = 2, and β =5.2. The remaining constants cζ and
cη can be determined by matching K and ε predicted by the model spectrum with
the DNS results. Using the present DNS results for Rλ = 16.5, 30.7, 39.9 and 53.3, the
constants cζ and cη are determined for each Rλ and listed in table 2.

From (31) and (35)–(37), the long-time translational diffusivity, Dt , as a function of
fibre length, can be written in terms of the energy spectrum E(k):

Dt =
4τu(L)

3L2

∫ L

0

ds (L − s)

∫ ∞

0

dk E(k)
sin(ks)

ks
, (39)

where τu(L) and E(k) are given in (28) and (38), respectively. The theoretical
predictions for Dt are plotted as the lines in figure 9 and compared with the DNS
results. Because τu is dependent only on integral-scale quantities and the dominant
contributions to the energy spectrum integral in (39) come from the energy-containing
eddies, the theoretical results for Dt/u

′2τL are nearly independent of Rλ. As fibre length
increases, the correlation time τu increases. However, the variance of the fibre velocity
decreases with increasing L because it results from a spatial average over the fibre
length. The decrease in the fibre velocity variance dominates the increase in the
correlation time and the dispersion coefficient decreases with increasing L.

The translational diffusivity of the fibre can be expressed as a product of the
variance of the velocity of the fibre 〈U 2〉 and the correlation time of the fibre
velocity TU . The approximation (39) for the diffusivity derived above involves two
primary assumptions. First, the correlation time for the fibre velocity TU is replaced
by the correlation time for the fluid velocity at the fibre’s centre of mass τu. This
approximation is shown to be reasonably accurate in figure 7. Second, we neglect any
correlation between the fibre orientation and the aspects of the fluid velocity that
contribute to the fibre’s velocity variance. This approximation may be expected to be
accurate in most instances, since the fibre’s velocity responds primarily to the large
length scales of the turbulent flow while the fibre orientation is more sensitive to the
small-scale eddies.

Olson & Kerekes (1998) derived an expression similar to (39) to predict the trans-
lational dispersion of fibres. Since they did not have an estimate for the correlation
time for the fluid velocity at the centre of mass of the fibre τu, they replaced it with
the Lagrangian integral time for a fluid particle. Olson (2001) found that Olson &
Kerekes’ formula did not give an accurate description of the fibre translational
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dispersion he simulated in a stochastic flow field. We have shown that accounting for
the dependence of τu on fibre length resolves this apparent discrepancy.

4. Rotational motion of the fibre
We now turn to the rotational dynamics of fibres in isotropic turbulent flows as

indicated by the temporal evolution of a unit vector p(t) indicating the orientation
of the fibre axis and the rotation rate (or time derivative of p) which will be denoted
as ṗ(t). In the next subsection we will discuss results for the simplest measure of the
fibres’ rotary motion, the variance of the fibre rotation rate 〈ṗ2〉 ≡ 〈 ṗ · ṗ〉. In § 4.2, we
will examine the Rλ-dependence of the correlation times for p and ṗ and compare
them to the results for the correlation times for the acceleration and velocity of the
fibre’s centre of mass. This exercise will help us to understand which length scales of
the turbulent flow contribute to the fibre’s rotary dynamics. Finally, in § 4.3 we give
results for several metrics of the turbulent rotary dispersion of fibres.

4.1. Fibre rotation-rate variance

Fibres are initially placed in a fully developed isotropic turbulent flow with randomly
chosen positions and orientations. We will consider both the initial rotation rate
variance (t =0) and the asymptotic rotation rate variance that occurs after the fibre
orientation has become correlated with the turbulent flow (t → ∞).

4.1.1. Short fibres

We first analyse the initial rotation rate variance of fibres with lengths smaller than
the Kolmogorov length scale L < η. The fluid velocity can be approximated as a linear
function of position along the fibre length so that the fibre rotation rate is given by
Jeffery’s (1922) equation:

ṗi = Γijpj − pipkSklpl, (40)

where Γij = Sij + Ωij is the velocity-gradient tensor and Sij =
1
2
(ui,j + uj,i) and Ωij =

1
2
(ui,j − uj,i) are the strain-rate and rotation-rate tensors, respectively. This expression

for the rotation of a fibre with an asymptotically large aspect ratio is equivalent to
the rotation rate of a fluid line. Thus, our results for short fibres will also indicate
the rotational velocity variance of fluid lines. An expression for the variance of the
rotation rate can be obtained by dotting the rotation rate from equation (40) with
itself and taking the ensemble average to yield:

〈ṗ2〉 = 〈pjplΓijΓil〉 − 2〈pipjplpmΓijSlm〉 + 〈pipjplpmSijSlm〉. (41)

At t = 0, the fibre orientation is uncorrelated with the directions of the local strain
rate and rotation rate, so that each average in (41) can be decomposed into the
product of an average of the orientation and an average of the velocity gradients, i.e.

〈ṗ2〉(0) = 〈pjpl〉〈ΓijΓil〉 − 2〈pipjplpm〉〈ΓijSlm〉 + 〈pipjplpm〉〈SijSlm〉. (42)

Since the fibre orientation distribution is isotropic, the moments of the orientation
distribution can be related to the general isotropic second- and fourth-order tensors.
We can then obtain a simple relationship between the initial rotational variance and
the Kolmogorov shear rate:

〈ṗ2〉(0) = 1
5
〈S2〉 + 1

3
〈Ω2〉 = 4

15
Γη

2, (43)
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where we have used the fact that 〈S2〉 ≡ 〈SijSij〉 = 〈Ω2〉 ≡ 〈ΩijΩij〉 = 1
2
Γη

2 in an isotropic
turbulent flow. Our simulation results indicate that 〈ṗ2〉(0)/Γη

2 is equal to 0.269±0.014
independent of Reynolds number for Rλ = 16.5 to 53.3. These results for the initial
rotation rate variance are in good agreement with the theoretical prediction (43)
which yields the ratio 0.267.

As time progresses, the fibres rotate in the turbulent flow and a correlation develops
between the orientation of the fibres and the local axes of the strain and rotation
rates. It is then no longer possible to break the averages in (41) into independent
averages of the velocity gradient and orientation statistics. We may expect that the
rotation rate will slow as the fibres become aligned with the strain and/or vorticity
field. Since the rotation rate of short fibres is still dependent on the local velocity
gradient, we may expect that the rotation rate variance will still be proportional to
the square of the Kolmogorov shear rate. In keeping with these expectations, the
simulations indicate that the rotation rate variance achieved at long times after the
introduction of the fibres into the flow is

〈ṗ2〉(∞)/Γη
2 = 0.0963 ± 0.0069, (44)

independent of Rλ.
Since the rotation-rate variance of short fibres is controlled by the local velocity

gradient following a particle that translates like a fluid particle, it provides an inte-
resting test case for stochastic models that attempt to reproduce the fluid velocity grad-
ient in a Lagrangian reference frame. Therefore, we have computed the long-time rot-
ation-rate variance using (40) in conjunction with the stochastic models of Girimaji &
Pope (1990) and Brunk, Koch & Lion (1998). Brunk et al. assumed that Sij and Ωij

were independent Gaussian variables satisfying isotropy and continuity conditions
and reproducing the Lagrangian correlation times for the strain and rotation rates
observed in DNS. This model has been shown to give accurate predictions for the
rate of coagulation of pairs of particles due to turbulent shearing motions. Girimaji &
Pope’s model incorporates an approximate description of the correlation between the
strain and rotation-rate tensors induced by the rotation and stretching of vortex lines,
but does not yield the correct correlation time for the rotation rate. Simulations with
Brunk et al.’s model yield a normalized long-time rotation-rate variance of 0.171 that
is much larger than that obtained from DNS. This discrepancy is not surprising,
because Brunk et al.’s model does not capture the correlation between the strain and
vorticity axes. Thus, for example, a fibre’s alignment with the straining field does
not retard its rotation due to the vorticity. Girimaji & Pope’s model yields a long-
time variance of 0.0834 that is about 13 % smaller than the DNS result. A possible
explanation for the slight discrepancy between the Girimaji & Pope model and the
DNS can be found by considering the degree of alignment of the vorticity vector
with the axes of strain. The strain axes can be characterized by the eigenvectors
q i and eigenvalues βi where β1 >β2 >β3 and typically β2 > 0. It has been noted
that the vorticity vector is preferentially aligned with q2 (Ashurst et al. 1987). This
alignment would favour local flows in which the fibre would eventually approach a
fixed orientation (i.e. strong flows) if the flow were not evolving with time. The mean
angle between the vorticity and q2 in the DNS is 0.833 whereas the Girimaji & Pope
model yields a mean angle of 0.615. If the vorticity and strain axes were uncorrelated,
the mean angle would be 1. Thus, Girimaji & Pope’s model overpredicts the alignment
of vorticity with the second strain axis and may thereby overestimate the fraction of
the fluid domain corresponding to strong, fibre aligning flows.
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Figure 10. The initial and long-time variances of the fibre rotation rate are plotted as functions
of fibre length, scaled by the Kolmogorov scales. The open and solid symbols denote the DNS
results for the initial and long-time variances respectively: �, Rλ = 16.5; �, 30.7; �, 39.9; �,
53.3. The lines are the theoretical predictions of initial rotation-rate variance. The lowest curve
is for Rλ = 16.5 and the highest for Rλ =53.3.

4.1.2. Long fibres

When the fibre length exceeds the Kolmorogov length scale, the fibre’s rotation is
influenced by the nonlinear dependence of the fluid velocity on spatial position. A
long fibre does not rotate very much under the influence of a much smaller eddy and
so the rotation-rate variance decreases with increasing fibre length. We can generalize
the simple argument given above for the initial variance of short fibres to the case
of longer fibres. From equation (17), the rotation-rate variance of a fibre can be
expressed as

〈ṗi ṗj 〉 =
24

L3

∫ L

0

ds

{
1 − 3

s

L
+ 2

(
s

L

)3}
〈ξi(0, 0, 0)ξj (s, X(t), t)〉, (45)

where ξi ≡ (δik − pipk)uk . Initially the fibre orientation, p, and the fluid velocity along
the fibre, u, are statistically independent. Using (33), the initial variance of the fibre
rotation rate can be rewritten as

〈ṗi ṗj 〉(0) = u′2 24

L3
〈(δik − pipk)(δjl − pjpl)〉

∫ L

0

ds

{
1 − 3

s

L
+ 2

(
s

L

)3}
Rkl(s). (46)

Employing the orthogonality between p and ṗ, the initial variance of fibre rotation
rate can be expressed as

〈ṗ2〉(0) = u′2 48

L3

∫ L

0

ds

{
1 − 3

s

L
+ 2

(
s

L

)3}
R⊥(s), (47)

where R⊥(s) is the two-point spatial correlation for the velocity transverse to the fibre
orientation given by (37).

The theoretical predictions for the initial fibre rotation-rate variance scaled by Γ 2
η

are plotted as a function of L/η as the solid lines in figure 10. The simulation results
(open symbols) for the initial rotation-rate variance agree with the theory within
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the statistical uncertainty of the simulations. Theory and experiment show a rapid
decrease in the rotation-rate variance as L/η exceeds values of about 5. There is also
a slight dependence of the rotation-rate variance on the Reynolds number for L/η >

about 5. The simulation results for the long-time rotation-rate variance of long fibres
are plotted as the solid symbols in figure 10. The long-time rotation-rate variance
also decreases with increasing L/η. However, the decrease is not as pronounced that
of the initial rotation-rate variance and the two approach one another at very large
fibre lengths.

The large differences between the initial and long-time rotational variances observed
for short fibres can be attributed to a strong tendency of short fibres (acting
like material lines) to align with the axes of the local velocity gradient field. The
translational and rotational motions of long fibres are much less correlated with
the fluid velocity field even at long times. Short fibres rotate primarily due to the
Kolmogorov-scale eddies that produce the largest shear rates. Long fibres are less
sensitive to the small-scale eddies due to the spatial averaging inherent in the fibre
equation of motion (17). Thus, the rotational motion of long fibres is influenced by
eddies with a range of lengths and the correlation of the fibre orientation with the
axes of the flow on any of these length scales is imperfect. In addition, long fibres
have a significant relative translational velocity with the fluid that decreases the time
available for fibres to align with the flow. These factors explain the relatively small
difference in the rotational velocity variance of long fibres initially placed in a random
uncorrelated fashion into the flow and the rotational velocity variance of long fibres
that have equilibrated with the flow.

4.2. Correlation statistics of the rotational motion

In this subsection we will consider the rotational dynamics of fibres in fully developed
isotropic turbulence. We focus on the dynamics of fibres that have already interacted
with the turbulence for an extended time period so that their alignment is correlated
with the flow and they have reached a statistical steady state. A simple measure of the
orientational changes incurred by the fibres is the two-time orientation correlation
function ρp(t). This correlation function is plotted as a function of time normalized
by the Kolmogorov time scale for various fibre lengths and Rλ = 39.9 in figure 11.
As the fibre length increases, the correlation in fibre orientation decays more slowly.
This may be expected in view of the results from the previous subsection indicating
that the rotation-rate variance decreases with increasing fibre length.

The two-time auto-correlation of the fibre’s rotation rate, ρṗ(t), is also plotted in
figure 11. Like the auto-correlation of fibre acceleration (see figure 6), ρṗ(t) is the
correlation function for a variable that is the derivative of a stationary random process
with a finite integral time scale. It therefore has a negative correlation at long times
so that the integral of ρṗ(t) over time is zero (Tennekes & Lumley 1972). Nonetheless,
it can be easily discerned from figure 11 that the correlations in the rotation rate
are more long lived in longer fibres. The auto-correlation of ṗ is plotted in figure 12
for short fibres (L < η) for the values of Rλ simulated in our study. The initial decay of
the correlation of ṗ including the zero-crossing time Tṗ0 is approximately independent
of Rλ. At longer times, higher Rλ flows yield a smaller negative minimum and a slower
approach of the autocorrelation to zero.

The zero-crossing time for the fibre rotation-rate correlation normalized by the
Kolmogorov time scale is plotted as a function of the fibre length divided by the
Kolmogorov length scale in figure 13. This measure of the correlation time for rotation
rate is independent of Reynolds number in this Kolmogorov scaling. For moderately
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Figure 11. The Lagrangian auto-correlations of fibre orientation p(t) and rotation rate ṗ(t)
for various fibre lengths (Rλ = 39.9). The upper curves denote ρp(t) and the lower curves
denote ρṗ(t).
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Figure 12. The Lagrangian auto-correlations of fibre orientation p(t) and rotation rate ṗ(t)
for various Reynolds numbers. The upper curves denote ρp(t) and the lower curves denote
ρṗ(t) for short fibres (L<η).

small fibres (L � 10η), the zero-crossing time for rotation rate is fitted well by the
quadratic asymptote

Tṗ0

τη

= 3.01 + 0.0027

(
L

η

)2

, (48)
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Figure 13. The zero-crossing time of ρṗ(t) is plotted as a function of fibre length, scaled by
the Kolmogorov scales. The symbols denote the DNS results: �, Rλ = 16.5; �, 30.7; �, 39.9;
�, 53.3. The solid line is the average quadratic asymptote (48) and the dashed line is the linear
fit (49) for longer fibres (L > 25η).

while Tṗ0 for longer fibres (L � 20η) exhibits a linear dependence on fibre length:

Tṗ0

τη

= 2.66 + 0.063
L

η
. (49)

We will now examine in more detail the decay in the correlation of fibre orientation,
ρp(t). The auto-correlation of fibre orientation is plotted as a function of t/τη for short
fibres in flows with various Reynolds numbers in figure 12. The correlation function
ρṗ(t) is approximately independent of Reynolds number at times shorter than the
zero-crossing time for rotation rate Tṗ0 = 3τη. This behaviour is to be expected since
the rotation-rate variance and Tṗ0 both scale with Kolmogorov time scales. However,
the longer time decay of the orientation correlation function exhibits a surprisingly
strong dependence on Rλ over the range of Reynolds numbers explored in our
simulations.

The integral time Tp for the fibre orientation is the simplest measure of the duration
of a fibre’s orientation auto-correlation in stationary isotropic turbulence. Previously,
we have noted that dimensional analysis suggests that the correlation times Ta0 and
Tṗ0 for fibre acceleration and rotation rate are controlled by the Kolmogorov scale and
the correlation time TU for the fibre velocity is controlled by the integral scale. Our
DNS results for these quantities as a function of fibre length and Rλ confirmed these
expectations. Because the fibre orientation is non-dimensional, one cannot directly
discern which scales of turbulence influence it using the dimensional analysis that we
applied to a, ṗ and U at the beginning of § 3.2. However, we will see in the following
subsection that the rotary dispersion coefficient Dr0 is inversely proportional to Tp .
Since Dr0 has units of inverse time, one would expect the contributions to this quantity
from eddies of size le in the inertial subrange to scale as (ε/ l2e )

1/3, similarly to ṗ. Thus,
the rotary dispersion coefficient and Tp may be expected to be dominated by the
smallest, Kolmogorov-scale eddies. This expectation is supported by the observations
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Figure 14. The integral time scale of the auto-correlation of fibre orientation, ρp(t), is plotted
as a function of fibre length, scaled by (a) Kolmogorov scales and (b) Eulerian integral scales.
The symbols denote the DNS results: �, Rλ =16.5; �, 30.7; �, 39.9; �, 53.3. The lines denote
the quadratic asymptotes of the DNS data for each Rλ.

that the fibre’s rotary dispersion results from the fibre rotational motions and that
〈ṗ2〉 and Tṗ0 have been found to scale with Kolmogorov scales.

The fibre orientation integral time Tp is plotted as a function of fibre length L in
figure 14. Figure 14(a) uses Kolmogorov time and length scales to non-dimensionalize
the variables while figure 14(b) uses integral-scale quantities. It can be seen that
neither scaling leads to results that are independent of Reynolds number. For short
fibres, the integral time can be fitted by the quadratic asymptotes:

Tp

τη

= cp,0 + cp,2

(
L

η

)2

, (50)
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TU are denoted by � and the coefficients for the integral time scale Tp by �. The lines indicate
the average values bU,0 = 0.773 and bU,2 = 0.102.

and

Tp

τE

= bp,0 + bp,2

(
L

Λ

)2

. (51)

However, cp,0 increases and cp,2 decreases with increasing Rλ, while bp,0 decreases
and bp,2 increases with increasing Rλ. This suggests that, for the Reynolds numbers
explored in our DNS study, the fibre’s orientation correlation time is influenced by
all the scales of turbulence and exhibits a scaling that is intermediate between
Kolmogorov and integral scalings. Figure 15 compares the Reynolds number
dependence of the coefficients bp,0 and bp,2 for the fibre orientation integral time
with the corresponding coefficients for the fibre velocity. It can be seen that the
coefficients for the fibre-velocity integral time is independent of Rλ when scaled with
the large scales of turbulence whereas the coefficients for Tp exhibit a systematic
dependence on Rλ.

Fibres rotate as a result of the velocity gradients in the turbulent flow. The largest
velocity gradients occur in Kolmogorov-scale eddies. Thus, we might have expected
Tp/τη to be a function of L/η independent of Reynolds number. It was found
in § 4.1, however, that the rotation-rate variance decreased considerably as the fibre
orientation became correlated with the axes of the local strain and vorticity fields. The
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long-time rotation-rate variance of short fibres is about 36 % of the initial variance.
Furthermore, as can be deduced from figure 10, the rotation rate occurring after the
fibres have equilibrated with the flow is not as strongly dominated by small-scale
eddies as one might have expected. Since the fibres rotate primarily due to eddies
larger than their length, this value of 〈ṗ2〉 for fibres of length L may be taken as an
indication of the ability of eddies larger than L to drive fibre rotation. It was found
that 〈ṗ2〉(t → ∞) is a much weaker function of L/η than is 〈ṗ2〉(t = 0). The small value
of the long-time rotation-rate variance leads us to expect a large integral time for the
auto-correlation of fibre orientation. Indeed we find in figure 14 that the value of Tp

is similar in magnitude to the Eulerian integral time τE for the Reynolds numbers
simulated here. If it is true that Tp = ϕτη with ϕ of independent Rλ as Rλ → ∞, then
it appears that ϕ must be a large number and that this asymptotic behaviour would
only be achieved at very high Rλ. It is not possible on the basis of the present DNS
to distinguish between this possibility and a scenario in which Tp continues to be
affected by intermediate scales of turbulence even as Rλ → ∞.

4.3. Rotary dispersion

In this section we define and examine DNS results for several rotary dispersion
coefficients characterizing the changes in fibre orientation induced by isotropic
turbulence. We will define these coefficients by analogies with the rotary diffusivity of
a Brownian fibre.

A Brownian fibre undergoes random rotational motions due to the forces exerted
by the surrounding solvent molecules. The correlation time for the molecular forcing
is much smaller than the viscous relaxation time of the particle (the time over which
the rotation rate remains correlated). In turn, the viscous relaxation time is much
smaller than the time 1/Dr over which O(1) changes in the fibre orientation vector
occur. These separations of time scales facilitate derivation of a simple governing
equation for the probability distribution function Ψ ( p) for fibre orientation:

∂Ψ

∂t
= Dr∇2

pΨ, (52)

where Dr is the rotary diffusivity and ∇p (= p × ∂/∂p) is the gradient operator in fibre
orientation space. The fibre orientation correlation function for a Brownian fibre can
be obtained by solving (52) subject to the initial condition

Ψ ( p, 0) = δ( p − p0), (53)

and then evaluating

ρp(t) = 〈 p(t) · p(0)〉 =
1

4π

∫
d p

∫
d p0 p(t) · p(0)Ψ ( p, t) (54)

to yield

ρp(t) = exp(−2Drt). (55)

A non-Brownian fibre in isotropic turbulence undergoes stochastic rotary motions
with no preferred direction for the orientational dynamics. In this way, turbulent
rotary dispersion is similar to rotational Brownian motion. However, there is not a
large separation of time scales between the correlation time for the rotation rate of a
fibre in turbulence and the time required for the orientation to change significantly.
In other words, Brownian fibres change their orientation due to many uncorrelated
random rotations, whereas a fibre in turbulence has a significant change in orientation
before the rotation-rate correlation function decays. Because of this distinction the
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Figure 16. The ratios of rotary diffusivities Dr1/Dr0 (solid symbols) and Dr2/Dr0(open
symbols) are plotted as functions of fibre length. The Reynolds-number conditions are indicated
by the shapes of the symbols: �, Rλ = 16.5; �, 30.7; �, 39.9; �, 53.3.

orientation correlation functions for fibres in turbulence (see figures 11 and 12) do
not have an exponential dependence on time such as that obtained for Brownian
fibres (55).

To define a rotary dispersion coefficient for fibres in turbulence, we can choose
a value that would reproduce some particular feature of the fibre’s orientation
correlation function. For example, we may choose to define the rotary dispersion
coefficient as the value of Dr that, when inserted into the governing equation for the
orientation distribution of a Brownian fibre, would yield the same integral time for
fibre orientation as that observed in the DNS. We will call this choice Dr0 and it is
given by

Dr0 =
1

2Tp

. (56)

The resulting values of Dr0 can be readily determined by reading the values of Tp

from figure 14.
An alternative definition of the dispersion coefficient (which we will call Dr1) focuses

on the long-time decay of the orientation correlation function. At sufficiently long
times, ρp(t) obtained for fibres in DNS of isotropic turbulence was found to decay
exponentially with time just as would occur for Brownian fibres. Thus, we can define
a long-time dispersion coefficient as

Dr1 = lim
t→∞

−1

2t
ln ρp(t). (57)

Of course the statistical uncertainty in ln ρp(t) grows with increasing time. However,
we were always able to obtain an accurate determination of the long-time plateau
value of −(1/2t) ln ρp(t) before the statistical uncertainty became too large. The ratio
of the long-time rotary dispersion coefficient Dr1 to the dispersion coefficient Dr0

based on the integral time for p is plotted as the solid symbols in figure 16. The ratio
Dr1/Dr0 is found to be about 1.2, independent of Rλ and L.
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Figure 17. The order parameters S and S∗ for L/η = 0.69 at Rλ = 39.9. Lines with symbols:
�, S(t); ×, S∗(t).

The fibre orientation correlation function ρp(t) is a natural method of characterizing
the dynamics of fibre orientation in the statistical steady state that occurs after fibres
have interacted with the turbulence for a long time period. However, when describing
the time evolution of an initially aligned suspension of fibres (e.g. p1 = p2 = 0, p3 = 1),
one commonly considers the order parameter defined as

S = 3
2
〈p3

2〉 − 1
2
, (58)

where the angle brackets indicate an average over the fibre orientation distribution
function Ψ ( p). The order parameter is 1 if all the fibres are oriented in the 3-direction
and 0 in an isotropic suspension. For a suspension of Brownian fibres that are initially
aligned with the 3-axis, it can be shown that

S = exp(−6Drt). (59)

We considered two types of simulation to explore the variation of the order parameter
in a fibre suspension with time. In the first simulation, fibres were introduced into a
stationary isotropic turbulent flow at random positions and with orientations parallel
to the 3-axis in such a way that the fibre orientation was uncorrelated with the
local turbulent shearing motion. The order parameter corresponding to this case is
indicated by S∗ and is plotted in figure 17. In the second type of simulation, motion
of fibres was simulated in a turbulent flow for a long period of time so that the
orientation of each fibre became correlated with the local flow. The 3-axis for a given
fibre was then chosen to correspond to the fibre orientation at time t = 0. In this way,
we simulate the behaviour that would occur in a fibre suspension where the fibres
have a common alignment but are equilibrated with the flow. The order parameter
corresponding to the latter simulation is indicated by S and is also plotted in figure 17.
It can be seen that the order parameter S∗ for fibres that are not pre-equilibrated
with the flow decays faster than that of S for the fibres that have interacted with
the flow before the initiation of the orientation experiment. This is to be expected in
view of the decrease of the fibre’s rotation-rate variance as the fibres interact with the
turbulence (see § 4.1).
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We can define a third rotary dispersion coefficient based on the dynamics of the
order parameter in the pre-equilibrated fibre simulations. Denoting the time at which
the order parameter decays to e−1 as TSe, we define the order-parameter dispersion
coefficient as

Dr2 =
1

6TSe

. (60)

As shown in figure 16, the ratio of Dr2 to Dr0 (open symbols) is about 0.6 and is
independent of Reynolds number and fibre length.

Over the range of Reynolds numbers explored in our study, the rotary dispersion
coefficient Dr0 based on the integral time scale for fibre orientation exhibits a
significant Reynolds number dependence whether it is non-dimensionalized using
τη or τE . The rotary dispersion coefficient also decreases with increasing fibre length.
We have seen that there are a number of choices that can be made for the definition of
the rotary dispersion coefficient. These different coefficients differ by O(1) numerical
factors. However, the three choices we have explored all exhibit the same dependence
on Rλ and L.

5. Conclusion
We have presented results of direct numerical simulations for the translational and

rotational motions of fibres in fully developed isotropic turbulence. Using slender-body
theory, it was shown that the leading-order behaviours of the fibre’s translational and
rotational velocity obtained from an expansion in powers of 1/ ln(L/b) are expressed
in terms of simple integrals involving the fluid velocity over the fibre length. Fibres
whose lengths are much smaller than the Kolmogorov length scale translate like
fluid particles and rotate like material lines. With increasing fibre length, the fibre’s
translational and rotational motions slow as the fibre becomes insensitive to the
smaller-scale eddies. This results in a decrease in the fibre rotation-rate variance,
rotary dispersion coefficient, translational diffusivity, etc. with increasing fibre length.

Simulations were performed for a range of Reynolds numbers in order to determine
how various aspects of the fibre motion scaled with the length and time scales of the
turbulence. The acceleration and rotary velocity of the fibre followed Kolmogorov
scalings and the fibre velocity followed integral scalings as expected. One might
expect the rotary dispersion coefficient to scale with the Kolmogorov time scale and
depend on the ratio of the fibre length to the Kolmogorov length scale, because rotary
dispersion results from the small-scale, local shearing motion of the fluid. However,
the rotary dispersion coefficient (whether non-dimensionalized by τη or τE) was found
to depend on the Reynolds number over the range of Reynolds numbers (Rλ = 16.5 to
55.6) explored in this study. As a fibre interacts with a turbulent flow, its orientation
becomes correlated with the local strain and rotational axes, leading to a significant
reduction in the rotational velocity variance. The fibre’s rotation due to small-scale
eddies is most strongly attenuated. The rotary dispersion is therefore smaller than
one might have anticipated and is on the order of 1/τE .

It was found that a simple theory similar to that presented by Olson & Kerekes
(1998) provided quantitative predictions for the translational diffusivity of the fibres.
This theory neglects correlations of the fibre alignment with the direction of the
fluid velocity and approximates the two-time, two-position fluid velocity correlation
at different positions along the fibre length as the product of a one-time, two-position
correlation and a two-time correlation for the fluid velocity at the fibre centre. To
obtain quantitative predictions of the dispersion it was necessary to use a fit of the
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simulation results for the integral time of the fluid velocity at the fibre centre. This
quantity varies from τL to τE as the fibre length increases and the fibre’s velocity
variance decreases.

Olson & Kerekes presented a similar theory for the rotary dispersion of a fibre,
assuming that the fibre’s orientation was uncorrelated with the local axes of strain and
rotation. Such a theory is not able to predict the rotary dispersion in a turbulent flow,
however, because the correlations of the fibre axis with the strain and rotation-rate
axes result in a significant slowing of the fibre’s rotary motion. It was found that
simulations based on a stochastic flow field (such as that of Brunk et al. 1998), which
treat the fluids strain and rotation independently greatly over-estimate the rotary
velocity of the fibres. On the other hand, Girimaji & Pope’s stochastic model, which
incorporates an approximate description of the correlations of the strain rate tensor
and vorticity, resulting from vortex line stretching, gives a reasonable approximation
to the rotation-rate velocity variance obtained in a turbulent flow. This observation
suggests that Girimaji & Pope’s model may be useful to investigators studying the
behaviour of other complex fluids (such as polymer solutions) in turbulent flows.

This work was supported by NSF grant CTS-0332902 and by a postdoctoral
fellowship to M. Shin granted by the Korea Science & Engineering Foundation
(KOSEF).
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